Interferometric, Tomographic and Geometric Cameras

Presentation for the DARPA Camera Ab Initio Workshop 28 April 2003

David J. Brady
Fitzpatrick Center and ECE Department
Duke University

How could cameras be better?

- 1. They could be more dimensionally aware.
- 2. They could be more feature aware.
- 3. They could be more data aware.
- 4. They could be more array aware.

A Brief History of DISP

1994

1995

1996

1997

1998

1999

Abramson

cathey Wolf

Munson

Mertz Roddier

Continuing History of DISP

15.0°
12.5°
10.0°
7.5°
5.0°

2.5°

Reconstructed Spatio-Spectral Dist.

www.disp.duke.edu

n A, Approved for Public Release, Distribution Unlimited

Conceptual History of DISP

What is an Interferometric Camera?

Measurement sphere

$$J(\Delta \mathbf{s}) = \iiint I_s(\mathbf{r}) e^{j2\pi \frac{\Delta \mathbf{s} \cdot \mathbf{r}}{\lambda}} d^3 \mathbf{r}$$

What is an Interferometric Camera?

$$J(\dot{x}_{1},\dot{x}_{2}) = -\frac{1}{2} \left\{ J(\dot{x}_{1},\dot{x}) \right\}$$

What is a Tomographic Camera?

What is Tomography?

Camera Classes

$$m = T$$

$$\vec{m} = 733$$

What is Reference Structure Tomography?

$$m(\vec{r}) = \int V(\vec{r},\vec{r}) S(\vec{r}) d\vec{r}$$

Why RST?

- Scan-Free Multidimensional Imaging
- Direct Parameter Estimation
- Direct Object Classification

RST vs. Coded Apertures RST vs. Interferometry

Example: Projection Sensors

Measurement Space

Reconstruction Space

Multidimensional Imaging

Measurement at Voxel 001

Difference between Sensor Field for Voxel 001 and 002 011 and 012

Delta(001,002) and Delta(021, 022)

Simulation of Multidimensional Imaging

RST Segmentation

Original Image

Reconstruction

Helmet Cam

Integraled 595 tems